

Cable Sizing Table for 12V DC Systems (10% Voltage Drop)

This table provides guidance for selecting the minimum cable cross-section (mm²) for 12-volt DC systems, based on current (A) and one-way cable length (m). It is intended for use in onboard power installations, such as thrusters, windlasses, and other high-current equipment on pleasure craft.

The calculations are based on a 10% maximum voltage drop in accordance with ISO 10133 for motor and heavy-load circuits in 12V DC systems. These are minimum recommended values. Selecting a larger cable size or reducing the cable length will reduce voltage drop and improve overall performance.

Method and Assumptions

The values in this table are calculated using the standard DC voltage drop formula:

```
Vd = 2 \times L \times I \times \rho / A

where:

Vd = voltage drop (V)

L = one-way cable length (m)

I = current (A)

\rho = resistivity of copper (0.0175 \Omega \cdot mm^2/m)

A = cable cross-sectional area (mm<sup>2</sup>)
```

The calculations assume a 10% voltage drop limit (1.2 V for a 12 V system). Values are rounded up to the next available standard cable size (ISO standard cross-sections).

Please note that the actual current-carrying capacity of a cable depends on installation conditions (ambient temperature, bundling, ventilation, etc.). This table is intended for voltage drop guidance rather than thermal current limits.

Current (A)	2 m	4 m	6 m	8 m	10 m	12 m	15 m	20 m
20 A	1.5 mm ²	2.5 mm ²	4 mm ²	6 mm ²	6 mm ²	10 mm ²	10 mm ²	16 mm ²
30 A	2.5 mm ²	4 mm ²	6 mm ²	10 mm ²	10 mm ²	16 mm ²	16 mm ²	25 mm ²
40 A	2.5 mm ²	6 mm ²	10 mm ²	10 mm ²	16 mm ²	16 mm ²	25 mm ²	25 mm ²
50 A	4 mm ²	6 mm ²	10 mm ²	16 mm ²	16 mm ²	25 mm ²	25 mm ²	35 mm ²
75 A	6 mm ²	10 mm ²	16 mm ²	25 mm ²	25 mm ²	35 mm ²	35 mm ²	50 mm ²
100 A	6 mm ²	16 mm ²	25 mm ²	25 mm ²	35 mm ²	35 mm ²	50 mm ²	70 mm ²
125 A	10	16	25	35	50	50	70	95
	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²
150 A	10	25	35	35	50	70	70	95
	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²
200 A	16	25	35	50	70	70	95	120
	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²
250 A	16	35	50	70	95	95	120	150
	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²
300 A	25	35	70	70	95	120	150	185
	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²
400 A	25	50	70	95	120	150	185	240
	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²
500 A	35	70	95	120	150	185	240	300
	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²	mm ²

These values represent the minimum recommended cross-section sizes. Using thicker cables or shorter lengths will reduce voltage drop and increase efficiency.